This dataset is an archival version of an algorithm implementation for strain localization analysis in digital image correlation data. The original application is to detect the occurrence of localization (i.e., collective buckling, hotspots, etc.) in uniaxial stress testing of polymer foams instrumented with 2D digital image correlation. The full-field strain maps are processed with a Marr wavelet and regions of excess strain are identified. These are used to compute an overall localization intensity factor with units of strain, which quantifies the degree of excess strain in localization regions above the nominal background. A Monte Carlo-like simulation mode is included in the scripts to provide validation for the metric. It is set up for using input data specifically from qDIC (https://github.com/FranckLab/qDIC) but could be straightforwardly adapted to other DIC output data. A run-script with example data from intermediate rate mechanical testing of an open-cell elastomeric foam is included. It consists of approximately 17 files using 188 MB of storage.
About this Dataset
Title | Code for qDIC-based Strain Localization Analysis with Wavelets (Q-SLAW) |
---|---|
Description | This dataset is an archival version of an algorithm implementation for strain localization analysis in digital image correlation data. The original application is to detect the occurrence of localization (i.e., collective buckling, hotspots, etc.) in uniaxial stress testing of polymer foams instrumented with 2D digital image correlation. The full-field strain maps are processed with a Marr wavelet and regions of excess strain are identified. These are used to compute an overall localization intensity factor with units of strain, which quantifies the degree of excess strain in localization regions above the nominal background. A Monte Carlo-like simulation mode is included in the scripts to provide validation for the metric. It is set up for using input data specifically from qDIC (https://github.com/FranckLab/qDIC) but could be straightforwardly adapted to other DIC output data. A run-script with example data from intermediate rate mechanical testing of an open-cell elastomeric foam is included. It consists of approximately 17 files using 188 MB of storage. |
Modified | 2024-01-10 00:00:00 |
Publisher Name | National Institute of Standards and Technology |
Contact | mailto:[email protected] |
Keywords | Digital image correlation , strain localization , compaction band , foam |
{ "identifier": "ark:\/88434\/mds2-3141", "accessLevel": "public", "contactPoint": { "hasEmail": "mailto:[email protected]", "fn": "Alexander Landauer" }, "programCode": [ "006:045" ], "landingPage": "https:\/\/data.nist.gov\/od\/id\/mds2-3141", "title": "Code for qDIC-based Strain Localization Analysis with Wavelets (Q-SLAW)", "description": "This dataset is an archival version of an algorithm implementation for strain localization analysis in digital image correlation data. The original application is to detect the occurrence of localization (i.e., collective buckling, hotspots, etc.) in uniaxial stress testing of polymer foams instrumented with 2D digital image correlation. The full-field strain maps are processed with a Marr wavelet and regions of excess strain are identified. These are used to compute an overall localization intensity factor with units of strain, which quantifies the degree of excess strain in localization regions above the nominal background. A Monte Carlo-like simulation mode is included in the scripts to provide validation for the metric. It is set up for using input data specifically from qDIC (https:\/\/github.com\/FranckLab\/qDIC) but could be straightforwardly adapted to other DIC output data. A run-script with example data from intermediate rate mechanical testing of an open-cell elastomeric foam is included. It consists of approximately 17 files using 188 MB of storage.", "language": [ "en" ], "distribution": [ { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/run_localization_detection_on_foam_data.m", "mediaType": "text\/x-objcsrc" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/run_localization_detection_on_foam_data.m.sha256", "mediaType": "text\/plain" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/README.md", "mediaType": "text\/x-web-markdown" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/README.md.sha256", "mediaType": "text\/plain" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/plotting_qdic_results.m", "mediaType": "text\/x-objcsrc" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/plotting_qdic_results.m.sha256", "mediaType": "text\/plain" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/inc2cum.m", "mediaType": "text\/x-objcsrc" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/inc2cum.m.sha256", "mediaType": "text\/plain" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/gradientN.m", "mediaType": "text\/x-objcsrc" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/gradientN.m.sha256", "mediaType": "text\/plain" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/calculateFij_2d.m", "mediaType": "text\/x-objcsrc" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/calculateFij_2d.m.sha256", "mediaType": "text\/plain" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/HowToRun_LocalizationAnalysis.txt", "mediaType": "text\/plain" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/HowToRun_LocalizationAnalysis.txt.sha256", "mediaType": "text\/plain" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/compute_localization_residual.m", "mediaType": "text\/x-objcsrc" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/compute_localization_residual.m.sha256", "mediaType": "text\/plain" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/localization_detection.m", "mediaType": "text\/x-objcsrc" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/localization_detection.m.sha256", "mediaType": "text\/plain" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/gen_synth_localized_strain_maps.m", "mediaType": "text\/x-objcsrc" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/gen_synth_localized_strain_maps.m.sha256", "mediaType": "text\/plain" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/localization_detection_testing.m", "mediaType": "text\/x-objcsrc" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/localization_detection_testing.m.sha256", "mediaType": "text\/plain" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/calculateEij_2d.m", "mediaType": "text\/x-objcsrc" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/calculateEij_2d.m.sha256", "mediaType": "text\/plain" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/output\/example_localization_amount.fig", "mediaType": "application\/x-xfig" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/output\/example_localization_amount.fig.sha256", "mediaType": "text\/plain" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/output\/example_localization_strength.fig", "mediaType": "application\/x-xfig" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/output\/example_localization_strength.fig.sha256", "mediaType": "text\/plain" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/output\/example_low_density_low_and_high_rate_results.mat", "mediaType": "application\/x-matlab-data" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/output\/example_low_density_low_and_high_rate_results.mat.sha256", "mediaType": "text\/plain" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/example_dic_data\/low_density_high_rate_run_data.mat", "mediaType": "application\/x-matlab-data" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/example_dic_data\/low_density_high_rate_run_data.mat.sha256", "mediaType": "text\/plain" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/example_dic_data\/low_density_low_rate_run_data.mat", "mediaType": "application\/x-matlab-data" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3141\/example_dic_data\/low_density_low_rate_run_data.mat.sha256", "mediaType": "text\/plain" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/mds2-3141\/README.md", "format": "Markdown text file", "mediaType": "application\/octet-stream", "title": "README" } ], "bureauCode": [ "006:55" ], "modified": "2024-01-10 00:00:00", "publisher": { "@type": "org:Organization", "name": "National Institute of Standards and Technology" }, "theme": [ "Metrology:Dimensional metrology", "Metrology:Optical, photometry, and laser metrology", "Materials:Materials characterization" ], "keyword": [ "Digital image correlation", "strain localization", "compaction band", "foam" ] }