U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock () or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Breadcrumb

  1. Home

Data for manuscript: Bound-state-in-continuum guided modes in a multilayer electro-optically active photonic integrated circuit platform.

Theoretical calculation, simulation and experimental measurement data from the paper "Bound-state-in-continuum guided modes in a multilayer electro-optically active photonic integrated circuit platform," Optica 11, 706-713 (2024). https://doi.org/10.1364/OPTICA.516044.Abstract: In many physical systems, the interaction with an open environment leads to energy dissipation and reduced coherence, making it challenging to control these systems effectively. In the context of wave phenomena, such lossy interactions can be specifically controlled to isolate the system, a condition known as a bound-state-in-continuum (BIC). Despite the recent advances in engineered BICs for photonic waveguiding, practical implementations are still largely polarization- and geometry-specific, and the underlying principles remain to be systematically explored. Here, we theoretically and experimentally study low loss BIC photonic waveguiding within a two-layer heterogeneous electro-optically active integrated photonic platform. We show that coupling to the slab wave continuum can be selectively suppressed for guided modes with different polarizations and spatial structure. We demonstrate a low-loss same-polarization quasi-BIC guided mode enabling a high extinction Mach-Zehnder electro-optic amplitude modulator within a single Si3N4 ridge waveguide integrated with an extended LiNbO3 slab layer. By elucidating the broad BIC waveguiding principles and demonstrating them in an industry-relevant photonic configuration, this work may inspire innovative approaches to photonic applications such as switching and filtering. The broader impact of this work extends beyond photonics, influencing research in other wave dynamics disciplines, including microwave and acoustics.

About this Dataset

Updated: 2025-04-06
Metadata Last Updated: 2024-05-28 00:00:00
Date Created: N/A
Data Provided by:
Dataset Owner: N/A

Access this data

Contact dataset owner Landing Page URL
Download URL
Table representation of structured data
Title Data for manuscript: Bound-state-in-continuum guided modes in a multilayer electro-optically active photonic integrated circuit platform.
Description Theoretical calculation, simulation and experimental measurement data from the paper "Bound-state-in-continuum guided modes in a multilayer electro-optically active photonic integrated circuit platform," Optica 11, 706-713 (2024). https://doi.org/10.1364/OPTICA.516044.Abstract: In many physical systems, the interaction with an open environment leads to energy dissipation and reduced coherence, making it challenging to control these systems effectively. In the context of wave phenomena, such lossy interactions can be specifically controlled to isolate the system, a condition known as a bound-state-in-continuum (BIC). Despite the recent advances in engineered BICs for photonic waveguiding, practical implementations are still largely polarization- and geometry-specific, and the underlying principles remain to be systematically explored. Here, we theoretically and experimentally study low loss BIC photonic waveguiding within a two-layer heterogeneous electro-optically active integrated photonic platform. We show that coupling to the slab wave continuum can be selectively suppressed for guided modes with different polarizations and spatial structure. We demonstrate a low-loss same-polarization quasi-BIC guided mode enabling a high extinction Mach-Zehnder electro-optic amplitude modulator within a single Si3N4 ridge waveguide integrated with an extended LiNbO3 slab layer. By elucidating the broad BIC waveguiding principles and demonstrating them in an industry-relevant photonic configuration, this work may inspire innovative approaches to photonic applications such as switching and filtering. The broader impact of this work extends beyond photonics, influencing research in other wave dynamics disciplines, including microwave and acoustics.
Modified 2024-05-28 00:00:00
Publisher Name National Institute of Standards and Technology
Contact mailto:[email protected]
Keywords Integrated photonics , silicon nitride , lithium niobate , bound state in continuum , BIC , electro-optic modulation , waveguiding
{
    "identifier": "ark:\/88434\/mds2-3331",
    "accessLevel": "public",
    "contactPoint": {
        "hasEmail": "mailto:[email protected]",
        "fn": "Vladimir Aksyuk"
    },
    "programCode": [
        "006:045"
    ],
    "landingPage": "https:\/\/data.nist.gov\/od\/id\/mds2-3331",
    "title": "Data for manuscript: Bound-state-in-continuum guided modes in a multilayer electro-optically active photonic integrated circuit platform.",
    "description": "Theoretical calculation, simulation and experimental measurement data from the paper \"Bound-state-in-continuum guided modes in a multilayer electro-optically active photonic integrated circuit platform,\" Optica 11, 706-713 (2024). https:\/\/doi.org\/10.1364\/OPTICA.516044.Abstract: In many physical systems, the interaction with an open environment leads to energy dissipation and reduced coherence, making it challenging to control these systems effectively. In the context of wave phenomena, such lossy interactions can be specifically controlled to isolate the system, a condition known as a bound-state-in-continuum (BIC). Despite the recent advances in engineered BICs for photonic waveguiding, practical implementations are still largely polarization- and geometry-specific, and the underlying principles remain to be systematically explored.  Here, we theoretically and experimentally study low loss BIC photonic waveguiding within a two-layer heterogeneous electro-optically active integrated photonic platform. We show that coupling to the slab wave continuum can be selectively suppressed for guided modes with different polarizations and spatial structure. We demonstrate a low-loss same-polarization quasi-BIC guided mode enabling a high extinction Mach-Zehnder electro-optic amplitude modulator within a single Si3N4 ridge waveguide integrated with an extended LiNbO3 slab layer. By elucidating the broad BIC waveguiding principles and demonstrating them in an industry-relevant photonic configuration, this work may inspire innovative approaches to photonic applications such as switching and filtering. The broader impact of this work extends beyond photonics, influencing research in other wave dynamics disciplines, including microwave and acoustics.",
    "language": [
        "en"
    ],
    "distribution": [
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Supplementary_Figure4_Optica\/TOC.txt",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Supplementary_Figure4_Optica\/TOC.txt.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Supplementary_Figure4_Optica\/Supplementary_Figure4a\/neff.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Supplementary_Figure4_Optica\/Supplementary_Figure4a\/neff.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Supplementary_Figure4_Optica\/Supplementary_Figure4b\/neff.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Supplementary_Figure4_Optica\/Supplementary_Figure4b\/neff.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Supplementary_Figure6_Optica\/TOC.txt",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Supplementary_Figure6_Optica\/TOC.txt.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Supplementary_Figure6_Optica\/Supplementary_Figure6a\/neff.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Supplementary_Figure6_Optica\/Supplementary_Figure6a\/neff.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Supplementary_Figure6_Optica\/Supplementary_Figure6b\/propagation_loss.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Supplementary_Figure6_Optica\/Supplementary_Figure6b\/propagation_loss.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/README.txt",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/README.txt.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure1\/TOC.txt",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure1\/TOC.txt.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure1\/Figure1c\/Effective_index.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure1\/Figure1c\/Effective_index.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure2\/TOC.txt",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure2\/TOC.txt.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure2\/Figure2b\/data_for_theoretical_calculation.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure2\/Figure2b\/data_for_theoretical_calculation.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure2\/Figure2b\/propagation_loss.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure2\/Figure2b\/propagation_loss.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure2\/Figure2g\/Wavelength%2C_waveguide_width.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure2\/Figure2g\/Wavelength%2C_waveguide_width.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure3\/TOC.txt",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure3\/TOC.txt.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure3\/Figure3c\/extinction_ratio_propagation_loss.xlsx",
            "mediaType": "application\/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure3\/Figure3c\/extinction_ratio_propagation_loss.xlsx.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure3\/Figure3c\/raw_spectrum_data.xlsx",
            "mediaType": "application\/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure3\/Figure3c\/raw_spectrum_data.xlsx.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure3\/Figure3d\/waterfall_transmission_spectrum.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure3\/Figure3d\/waterfall_transmission_spectrum.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure3\/Figure3dinset\/spectrum_with_highest_transmission.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure3\/Figure3dinset\/spectrum_with_highest_transmission.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure3\/Figure3e\/eo_modulation.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure3\/Figure3e\/eo_modulation.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure3\/Figure3einset\/log_scale_eo_modulation.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure3\/Figure3einset\/log_scale_eo_modulation.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure3\/Figure3f\/EO_frequency_response.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure3\/Figure3f\/EO_frequency_response.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure4\/TOC.txt",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure4\/TOC.txt.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure4\/Figure4b\/propagation_loss.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure4\/Figure4b\/propagation_loss.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure4\/Figure4c\/neff.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Figure4\/Figure4c\/neff.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Supplementary_Figure2_Optica\/TOC.txt",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Supplementary_Figure2_Optica\/TOC.txt.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Supplementary_Figure2_Optica\/FigureS2a\/propagation_loss.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Supplementary_Figure2_Optica\/FigureS2a\/propagation_loss.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Supplementary_Figure3_Optica\/TOC.txt",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Supplementary_Figure3_Optica\/TOC.txt.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Supplementary_Figure3_Optica\/Figure_S3a\/propagation_loss.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3331\/Supplementary_Figure3_Optica\/Figure_S3a\/propagation_loss.csv.sha256",
            "mediaType": "text\/plain",
            "title": "README.txt"
        }
    ],
    "bureauCode": [
        "006:55"
    ],
    "modified": "2024-05-28 00:00:00",
    "publisher": {
        "@type": "org:Organization",
        "name": "National Institute of Standards and Technology"
    },
    "theme": [
        "Electronics:Semiconductors",
        "Nanotechnology:Nanophotonics",
        "Physics:Optical physics",
        "Electronics:Optoelectronics"
    ],
    "keyword": [
        "Integrated photonics",
        "silicon nitride",
        "lithium niobate",
        "bound state in continuum",
        "BIC",
        "electro-optic modulation",
        "waveguiding"
    ]
}