U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock () or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Breadcrumb

  1. Home

Modeled Habitat Suitability for Mesophotic Hard Corals in Au'au Channel, Hawai'i from 2004-09-09 to 2010-07-17 (NCEI Accession 0129788)

Mesophotic hard corals (MHC) are increasingly threatened by a growing number of anthropogenic stressors, including impacts from fishing, land-based sources of pollution, and ocean acidification. However, little is known about their geographic distributions (particularly around the Pacific islands) because it is logistically challenging and expensive to gather data in the 30 to 150 meter depth range where these organisms typically live. The goal of this study was to begin to fill this knowledge gap by modelling and predicting the spatial distribution of three genera of mesophotic hard corals offshore of Maui in the Main Hawaiian Islands. Maximum Entropy modeling software was used to create separate maps of predicted probability of occurrence and uncertainty for: (1) Leptoseris, (2) Montipora, and (3) Porites. Genera prevalence was derived from the in situ presence/absence data, and used to convert relative habitat suitability to probability of occurrence values. Approximately 1,300 georeferenced records of the occurrence of MHC, and 34 environmental predictors were used to train the model ensembles. Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) values were between 0.89 and 0.97, indicating excellent overall model performance. Mean uncertainty and mean absolute error for the spatial predictions ranged from 0.006% to 0.05% and 3.73% to 17.6%, respectively. Depth, distance from shore, euphotic depth (mean and standard deviation) and sea surface temperature (mean and standard deviation) were identified as the six most influential predictor variables for partitioning habitats among the three genera. MHC were concentrated between Hanaka‘ō‘ō and Papawai Points offshore of western Maui most likely because this area hosts warmer, clearer and calmer water conditions almost year round. While these predictions helped to fill some knowledge gaps offshore of Maui, many information gaps remain in the Hawaiian Archipelago and Pacific Islands. This approach may be used to identify other potentially suitable areas for MHCs, helping scientists and resource managers prioritize sites, and focus their limited resources on areas that may be of higher scientific or conservation value.

About this Dataset

Updated: 2024-02-22
Metadata Last Updated: 2025-11-19T15:42:52.568Z
Date Created: N/A
Data Provided by:
Dataset Owner: N/A

Access this data

Contact dataset owner Access URL
Table representation of structured data
Title Modeled Habitat Suitability for Mesophotic Hard Corals in Au'au Channel, Hawai'i from 2004-09-09 to 2010-07-17 (NCEI Accession 0129788)
Description Mesophotic hard corals (MHC) are increasingly threatened by a growing number of anthropogenic stressors, including impacts from fishing, land-based sources of pollution, and ocean acidification. However, little is known about their geographic distributions (particularly around the Pacific islands) because it is logistically challenging and expensive to gather data in the 30 to 150 meter depth range where these organisms typically live. The goal of this study was to begin to fill this knowledge gap by modelling and predicting the spatial distribution of three genera of mesophotic hard corals offshore of Maui in the Main Hawaiian Islands. Maximum Entropy modeling software was used to create separate maps of predicted probability of occurrence and uncertainty for: (1) Leptoseris, (2) Montipora, and (3) Porites. Genera prevalence was derived from the in situ presence/absence data, and used to convert relative habitat suitability to probability of occurrence values. Approximately 1,300 georeferenced records of the occurrence of MHC, and 34 environmental predictors were used to train the model ensembles. Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) values were between 0.89 and 0.97, indicating excellent overall model performance. Mean uncertainty and mean absolute error for the spatial predictions ranged from 0.006% to 0.05% and 3.73% to 17.6%, respectively. Depth, distance from shore, euphotic depth (mean and standard deviation) and sea surface temperature (mean and standard deviation) were identified as the six most influential predictor variables for partitioning habitats among the three genera. MHC were concentrated between Hanaka‘ō‘ō and Papawai Points offshore of western Maui most likely because this area hosts warmer, clearer and calmer water conditions almost year round. While these predictions helped to fill some knowledge gaps offshore of Maui, many information gaps remain in the Hawaiian Archipelago and Pacific Islands. This approach may be used to identify other potentially suitable areas for MHCs, helping scientists and resource managers prioritize sites, and focus their limited resources on areas that may be of higher scientific or conservation value.
Modified 2025-11-19T15:42:52.568Z
Publisher Name N/A
Contact N/A
Keywords 0129788 , CORAL , model output , US DOC/NOAA/NOS/National Centers for Coastal Ocean Science/Center for Coastal Monitoring and Assessment , CORAL REEF STUDIES , Hawaii Undersea Research Laboratory (HURL) , Hawaiian Islands Humpback Whale National Marine Sanctuary , North Pacific Ocean , oceanography , DOC/NOAA/NESDIS/NODC > National Oceanographic Data Center, NESDIS, NOAA, U.S. Department of Commerce , DOC/NOAA/NOS/NCCOS > National Centers for Coastal Ocean Science, National Ocean Service, NOAA, U.S. Department of Commerce , EARTH SCIENCE > SOLID EARTH > GEOMORPHIC LANDFORMS/PROCESSES > COASTAL LANDFORMS > CORAL REEFS , OCEAN > PACIFIC OCEAN > CENTRAL PACIFIC OCEAN > HAWAIIAN ISLANDS , OCEAN > PACIFIC OCEAN > NORTH PACIFIC OCEAN , KHU268 , environment , oceans , biota
{
    "identifier": "gov.noaa.nodc:0129788",
    "accessLevel": "public",
    "contactPoint": {
        "@type": "vcard:Contact",
        "fn": "Your contact point",
        "hasEmail": "mailto:[email protected]"
    },
    "programCode": [
        "010:000"
    ],
    "landingPage": "",
    "title": "Modeled Habitat Suitability for Mesophotic Hard Corals in Au'au Channel, Hawai'i from 2004-09-09 to 2010-07-17 (NCEI Accession 0129788)",
    "description": "Mesophotic hard corals (MHC) are increasingly threatened by a growing number of anthropogenic stressors, including impacts from fishing, land-based sources of pollution, and ocean acidification. However, little is known about their geographic distributions (particularly around the Pacific islands) because it is logistically challenging and expensive to gather data in the 30 to 150 meter depth range where these organisms typically live. The goal of this study was to begin to fill this knowledge gap by modelling and predicting the spatial distribution of three genera of mesophotic hard corals offshore of Maui in the Main Hawaiian Islands. Maximum Entropy modeling software was used to create separate maps of predicted probability of occurrence and uncertainty for: (1) Leptoseris, (2) Montipora, and (3) Porites. Genera prevalence was derived from the in situ presence\/absence data, and used to convert relative habitat suitability to probability of occurrence values. Approximately 1,300 georeferenced records of the occurrence of MHC, and 34 environmental predictors were used to train the model ensembles. Receiver Operating Characteristic (ROC) Area Under the Curve (AUC) values were between 0.89 and 0.97, indicating excellent overall model performance. Mean uncertainty and mean absolute error for the spatial predictions ranged from 0.006% to 0.05% and 3.73% to 17.6%, respectively. Depth, distance from shore, euphotic depth (mean and standard deviation) and sea surface temperature (mean and standard deviation) were identified as the six most influential predictor variables for partitioning habitats among the three genera. MHC were concentrated between Hanaka\u2018\u014d\u2018\u014d and Papawai Points offshore of western Maui most likely because this area hosts warmer, clearer and calmer water conditions almost year round. While these predictions helped to fill some knowledge gaps offshore of Maui, many information gaps remain in the Hawaiian Archipelago and Pacific Islands. This approach may be used to identify other potentially suitable areas for MHCs, helping scientists and resource managers prioritize sites, and focus their limited resources on areas that may be of higher scientific or conservation value.",
    "language": "",
    "distribution": [
        {
            "@type": "dcat:Distribution",
            "mediaType": "application\/json",
            "accessURL": "https:\/\/www.ncei.noaa.gov\/metadata\/geoportal\/\/rest\/metadata\/item\/gov.noaa.nodc%3A0129788"
        },
        {
            "@type": "dcat:Distribution",
            "mediaType": "text\/html",
            "accessURL": "https:\/\/www.ncei.noaa.gov\/metadata\/geoportal\/\/rest\/metadata\/item\/gov.noaa.nodc%3A0129788\/html"
        },
        {
            "@type": "dcat:Distribution",
            "mediaType": "application\/xml",
            "accessURL": "https:\/\/www.ncei.noaa.gov\/metadata\/geoportal\/\/rest\/metadata\/item\/gov.noaa.nodc%3A0129788\/xml"
        },
        {
            "@type": "dcat:Distribution",
            "mediaType": "application\/octet-stream",
            "accessURL": "https:\/\/www.ncei.noaa.gov\/access\/metadata\/landing-page\/bin\/gfx?id=gov.noaa.nodc:0129788"
        }
    ],
    "bureauCode": [
        "010:04"
    ],
    "modified": "2025-11-19T15:42:52.568Z",
    "publisher": {
        "@type": "org:Organization",
        "name": "Your Publisher"
    },
    "theme": "",
    "keyword": [
        "0129788",
        "CORAL",
        "model output",
        "US DOC\/NOAA\/NOS\/National Centers for Coastal Ocean Science\/Center for Coastal Monitoring and Assessment",
        "CORAL REEF STUDIES",
        "Hawaii Undersea Research Laboratory (HURL)",
        "Hawaiian Islands Humpback Whale National Marine Sanctuary",
        "North Pacific Ocean",
        "oceanography",
        "DOC\/NOAA\/NESDIS\/NODC > National Oceanographic Data Center, NESDIS, NOAA, U.S. Department of Commerce",
        "DOC\/NOAA\/NOS\/NCCOS > National Centers for Coastal Ocean Science, National Ocean Service, NOAA, U.S. Department of Commerce",
        "EARTH SCIENCE > SOLID EARTH > GEOMORPHIC LANDFORMS\/PROCESSES > COASTAL LANDFORMS > CORAL REEFS",
        "OCEAN > PACIFIC OCEAN > CENTRAL PACIFIC OCEAN > HAWAIIAN ISLANDS",
        "OCEAN > PACIFIC OCEAN > NORTH PACIFIC OCEAN",
        "KHU268",
        "environment",
        "oceans",
        "biota"
    ]
}