U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock () or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Breadcrumb

  1. Home

GHRSST Level 2P OSPO dataset v2.61 from VIIRS on the NOAA-20 satellite (GDS version 2) for 2023-04-04 (NCEI Accession 0277514)

NOAA-20 (N20/JPSS-1/J1) is the second satellite in the US NOAA latest generation Joint Polar Satellite System (JPSS). N20 was launched on November 18, 2017. In conjunction with the first US satellite in JPSS series, Suomi National Polar-orbiting Partnership (S-NPP) satellite launched on October 28, 2011, N20 form the new NOAA polar constellation. NOAA is responsible for all JPSS products, including SST from the Visible Infrared Imaging Radiometer Suite (VIIRS). VIIRS is a whiskbroom scanning radiometer, which takes measurements in the cross-track direction within a field of view of 112.56-deg using 16 detectors and a double-sided mirror assembly. At a nominal altitude of 829 km, the swath width is 3,060 km, providing global daily coverage for both day and night passes. VIIRS has 22 spectral bands, covering the spectrum from 0.4-12 um, including 16 moderate resolution bands (M-bands). The L2P SST product is derived at the native sensor resolution (~0.75 km at nadir, ~1.5 km at swath edge) using NOAA's Advanced Clear-Sky Processor for Ocean (ACSPO) system, and reported in 10 minute granules in netCDF4 format, compliant with the GHRSST Data Specification version 2 (GDS2). There are 144 granules per 24hr interval, with a total data volume of 27GB/day. In addition to pixel-level earth locations, Sun-sensor geometry, and ancillary data from the NCEP global weather forecast, ACSPO outputs include four brightness temperatures (BTs) in M12 (3.7um), M14 (8.6um), M15 (11um), and M16 (12um) bands, and two reflectances in M5 (0.67um) and M7 (0.87um) bands. The reflectances are used for cloud identification. Beginning with ACSPO v2.60, all BTs and reflectances are destriped (Bouali and Ignatov, 2014) and resampled (Gladkova et al., 2016), to minimize the effect of bow-tie distortions and deletions. SSTs are retrieved from destriped BTs. SSTs are derived from BTs using the Multi-Channel SST (MCSST; night) and Non-Linear SST (NLSST; day) algorithms (Petrenko et al., 2014). ACSPO clear-sky mask (ACSM) is provided in each pixel as part of variable l2p_flags, which also includes day/night, land, ice, twilight, and glint flags (Petrenko et al., 2010). Fill values are reported in all pixels with >5 km inland. For each valid water pixel (defined as ocean, sea, lake or river, and up to 5 km inland), four BTs in M12/14/15/16 (included for those users interested in direct "radiance assimilation", e.g., NOAA NCEP, NASA GMAO, ECMWF) and two reflectances in M5/7 are reported, along with derived SST. Other variables include NCEP wind speed and ACSPO SST minus reference SST (Canadian Met Centre 0.1deg L4 SST). Only ACSM confidently clear pixels are recommended (equivalent to GDS2 quality level=5). Per GDS2 specifications, two additional Sensor-Specific Error Statistics layers (SSES bias and standard deviation) are reported in each pixel with QL=5. Note that users of ACSPO data have the flexibility to ignore the ACSM and derive their own clear-sky mask, and apply it to BTs and SSTs. They may also ignore ACSPO SSTs, and derive their own SSTs from the original BTs. The L2P product is monitored and validated against quality controlled in situ data provided by NOAA in situ SST Quality Monitor system (iQuam; Xu and Ignatov, 2014), using another NOAA system, SST Quality Monitor (SQUAM; Dash et al, 2010). Corresponding clear-sky BTs are validated against RTM simulation in the Monitoring IR Clear-sky Radiances over Ocean for SST system (MICROS; Liang and Ignatov, 2011). A reduced size (1GB/day), equal-angle gridded (0.02-deg), ACSPO L3U product is also available, where gridded L2P SSTs with QL=5 only are reported, and BT layers omitted.

About this Dataset

Updated: 2024-02-22
Metadata Last Updated: 2023-04-08T04:15:31.162Z
Date Created: N/A
Data Provided by:
Dataset Owner: N/A

Access this data

Contact dataset owner Access URL
Table representation of structured data
Title GHRSST Level 2P OSPO dataset v2.61 from VIIRS on the NOAA-20 satellite (GDS version 2) for 2023-04-04 (NCEI Accession 0277514)
Description NOAA-20 (N20/JPSS-1/J1) is the second satellite in the US NOAA latest generation Joint Polar Satellite System (JPSS). N20 was launched on November 18, 2017. In conjunction with the first US satellite in JPSS series, Suomi National Polar-orbiting Partnership (S-NPP) satellite launched on October 28, 2011, N20 form the new NOAA polar constellation. NOAA is responsible for all JPSS products, including SST from the Visible Infrared Imaging Radiometer Suite (VIIRS). VIIRS is a whiskbroom scanning radiometer, which takes measurements in the cross-track direction within a field of view of 112.56-deg using 16 detectors and a double-sided mirror assembly. At a nominal altitude of 829 km, the swath width is 3,060 km, providing global daily coverage for both day and night passes. VIIRS has 22 spectral bands, covering the spectrum from 0.4-12 um, including 16 moderate resolution bands (M-bands). The L2P SST product is derived at the native sensor resolution (~0.75 km at nadir, ~1.5 km at swath edge) using NOAA's Advanced Clear-Sky Processor for Ocean (ACSPO) system, and reported in 10 minute granules in netCDF4 format, compliant with the GHRSST Data Specification version 2 (GDS2). There are 144 granules per 24hr interval, with a total data volume of 27GB/day. In addition to pixel-level earth locations, Sun-sensor geometry, and ancillary data from the NCEP global weather forecast, ACSPO outputs include four brightness temperatures (BTs) in M12 (3.7um), M14 (8.6um), M15 (11um), and M16 (12um) bands, and two reflectances in M5 (0.67um) and M7 (0.87um) bands. The reflectances are used for cloud identification. Beginning with ACSPO v2.60, all BTs and reflectances are destriped (Bouali and Ignatov, 2014) and resampled (Gladkova et al., 2016), to minimize the effect of bow-tie distortions and deletions. SSTs are retrieved from destriped BTs. SSTs are derived from BTs using the Multi-Channel SST (MCSST; night) and Non-Linear SST (NLSST; day) algorithms (Petrenko et al., 2014). ACSPO clear-sky mask (ACSM) is provided in each pixel as part of variable l2p_flags, which also includes day/night, land, ice, twilight, and glint flags (Petrenko et al., 2010). Fill values are reported in all pixels with >5 km inland. For each valid water pixel (defined as ocean, sea, lake or river, and up to 5 km inland), four BTs in M12/14/15/16 (included for those users interested in direct "radiance assimilation", e.g., NOAA NCEP, NASA GMAO, ECMWF) and two reflectances in M5/7 are reported, along with derived SST. Other variables include NCEP wind speed and ACSPO SST minus reference SST (Canadian Met Centre 0.1deg L4 SST). Only ACSM confidently clear pixels are recommended (equivalent to GDS2 quality level=5). Per GDS2 specifications, two additional Sensor-Specific Error Statistics layers (SSES bias and standard deviation) are reported in each pixel with QL=5. Note that users of ACSPO data have the flexibility to ignore the ACSM and derive their own clear-sky mask, and apply it to BTs and SSTs. They may also ignore ACSPO SSTs, and derive their own SSTs from the original BTs. The L2P product is monitored and validated against quality controlled in situ data provided by NOAA in situ SST Quality Monitor system (iQuam; Xu and Ignatov, 2014), using another NOAA system, SST Quality Monitor (SQUAM; Dash et al, 2010). Corresponding clear-sky BTs are validated against RTM simulation in the Monitoring IR Clear-sky Radiances over Ocean for SST system (MICROS; Liang and Ignatov, 2011). A reduced size (1GB/day), equal-angle gridded (0.02-deg), ACSPO L3U product is also available, where gridded L2P SSTs with QL=5 only are reported, and BT layers omitted.
Modified 2023-04-08T04:15:31.162Z
Publisher Name N/A
Contact N/A
Keywords 0277514 , ICE - COVERAGE , SEA SURFACE TEMPERATURE , WIND SPEED , VIIRS , satellite data , NOAA-20 (JPSS-1) , US DOC; NOAA; NESDIS; Office of Satellite and Product Operations , US DOC; NOAA; NESDIS; Office of Satellite and Product Operations , Group for High Resolution Sea Surface Temperature (GHRSST) , World-Wide Distribution , oceanography , DOC/NOAA/NESDIS/OSPO > Office of Satellite and Product Operations, NESDIS, NOAA, U.S. Department of Commerce , GHRSST > Group for High Resolution Sea Surface Temperature , EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WINDS > SURFACE WINDS > WIND SPEED , EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > SEA SURFACE TEMPERATURE , EARTH SCIENCE > OCEANS > SEA ICE > ICE EXTENT , VIIRS > Visible-Infrared Imager-Radiometer Suite , NOAA-20 > Joint Polar Satellite System - 1 , NOAA-20 (ICES code: 33YO) , GEOGRAPHIC REGION > GLOBAL OCEAN , environment , oceans , climatologyMeteorologyAtmosphere
{
    "identifier": "gov.noaa.nodc:0277514",
    "accessLevel": "public",
    "contactPoint": {
        "@type": "vcard:Contact",
        "fn": "Your contact point",
        "hasEmail": "mailto:[email protected]"
    },
    "programCode": [
        "010:000"
    ],
    "landingPage": "",
    "title": "GHRSST Level 2P OSPO dataset v2.61 from VIIRS on the NOAA-20 satellite (GDS version 2) for 2023-04-04 (NCEI Accession 0277514)",
    "description": "NOAA-20 (N20\/JPSS-1\/J1) is the second satellite in the US NOAA latest generation Joint Polar Satellite System (JPSS). N20 was launched on November 18, 2017. In conjunction with the first US satellite in JPSS series, Suomi National Polar-orbiting Partnership (S-NPP) satellite launched on October 28, 2011, N20 form the new NOAA polar constellation. NOAA is responsible for all JPSS products, including SST from the Visible Infrared Imaging Radiometer Suite (VIIRS). VIIRS is a whiskbroom scanning radiometer, which takes measurements in the cross-track direction within a field of view of 112.56-deg using 16 detectors and a double-sided mirror assembly. At a nominal altitude of 829 km, the swath width is 3,060 km, providing global daily coverage for both day and night passes. VIIRS has 22 spectral bands, covering the spectrum from 0.4-12 um, including 16 moderate resolution bands (M-bands). The L2P SST product is derived at the native sensor resolution (~0.75 km at nadir, ~1.5 km at swath edge) using NOAA's Advanced Clear-Sky Processor for Ocean (ACSPO) system, and reported in 10 minute granules in netCDF4 format, compliant with the GHRSST Data Specification version 2 (GDS2). There are 144 granules per 24hr interval, with a total data volume of 27GB\/day. In addition to pixel-level earth locations, Sun-sensor geometry, and ancillary data from the NCEP global weather forecast, ACSPO outputs include four brightness temperatures (BTs) in M12 (3.7um), M14 (8.6um), M15 (11um), and M16 (12um) bands, and two reflectances in M5 (0.67um) and M7 (0.87um) bands. The reflectances are used for cloud identification. Beginning with ACSPO v2.60, all BTs and reflectances are destriped (Bouali and Ignatov, 2014) and resampled (Gladkova et al., 2016), to minimize the effect of bow-tie distortions and deletions. SSTs are retrieved from destriped BTs. SSTs are derived from BTs using the Multi-Channel SST (MCSST; night) and Non-Linear SST (NLSST; day) algorithms (Petrenko et al., 2014). ACSPO clear-sky mask (ACSM) is provided in each pixel as part of variable l2p_flags, which also includes day\/night, land, ice, twilight, and glint flags (Petrenko et al., 2010). Fill values are reported in all pixels with >5 km inland. For each valid water pixel (defined as ocean, sea, lake or river, and up to 5 km inland), four BTs in M12\/14\/15\/16 (included for those users interested in direct \"radiance assimilation\", e.g., NOAA NCEP, NASA GMAO, ECMWF) and two reflectances in M5\/7 are reported, along with derived SST. Other variables include NCEP wind speed and ACSPO SST minus reference SST (Canadian Met Centre 0.1deg L4 SST).  Only ACSM confidently clear pixels are recommended (equivalent to GDS2 quality level=5). Per GDS2 specifications, two additional Sensor-Specific Error Statistics layers (SSES bias and standard deviation) are reported in each pixel with QL=5. Note that users of ACSPO data have the flexibility to ignore the ACSM and derive their own clear-sky mask, and apply it to BTs and SSTs. They may also ignore ACSPO SSTs, and derive their own SSTs from the original BTs. The L2P product is monitored and validated against quality controlled in situ data provided by NOAA in situ SST Quality Monitor system (iQuam; Xu and Ignatov, 2014), using another NOAA system, SST Quality Monitor (SQUAM; Dash et al, 2010). Corresponding clear-sky BTs are validated against RTM simulation in the Monitoring IR Clear-sky Radiances over Ocean for SST system (MICROS; Liang and Ignatov, 2011). A reduced size (1GB\/day), equal-angle gridded (0.02-deg), ACSPO L3U product is also available, where gridded L2P SSTs with QL=5 only are reported, and BT layers omitted.",
    "language": "",
    "distribution": [
        {
            "@type": "dcat:Distribution",
            "mediaType": "application\/json",
            "accessURL": "https:\/\/www.ncei.noaa.gov\/metadata\/geoportal\/\/rest\/metadata\/item\/gov.noaa.nodc%3A0277514"
        },
        {
            "@type": "dcat:Distribution",
            "mediaType": "text\/html",
            "accessURL": "https:\/\/www.ncei.noaa.gov\/metadata\/geoportal\/\/rest\/metadata\/item\/gov.noaa.nodc%3A0277514\/html"
        },
        {
            "@type": "dcat:Distribution",
            "mediaType": "application\/xml",
            "accessURL": "https:\/\/www.ncei.noaa.gov\/metadata\/geoportal\/\/rest\/metadata\/item\/gov.noaa.nodc%3A0277514\/xml"
        },
        {
            "@type": "dcat:Distribution",
            "mediaType": "application\/octet-stream",
            "accessURL": "https:\/\/www.ncei.noaa.gov\/access\/metadata\/landing-page\/bin\/gfx?id=gov.noaa.nodc:0277514"
        }
    ],
    "bureauCode": [
        "010:04"
    ],
    "modified": "2023-04-08T04:15:31.162Z",
    "publisher": {
        "@type": "org:Organization",
        "name": "Your Publisher"
    },
    "theme": "",
    "keyword": [
        "0277514",
        "ICE - COVERAGE",
        "SEA SURFACE TEMPERATURE",
        "WIND SPEED",
        "VIIRS",
        "satellite data",
        "NOAA-20 (JPSS-1)",
        "US DOC; NOAA; NESDIS; Office of Satellite and Product Operations",
        "US DOC; NOAA; NESDIS; Office of Satellite and Product Operations",
        "Group for High Resolution Sea Surface Temperature (GHRSST)",
        "World-Wide Distribution",
        "oceanography",
        "DOC\/NOAA\/NESDIS\/OSPO > Office of Satellite and Product Operations, NESDIS, NOAA, U.S. Department of Commerce",
        "GHRSST > Group for High Resolution Sea Surface Temperature",
        "EARTH SCIENCE > ATMOSPHERE > ATMOSPHERIC WINDS > SURFACE WINDS > WIND SPEED",
        "EARTH SCIENCE > OCEANS > OCEAN TEMPERATURE > SEA SURFACE TEMPERATURE",
        "EARTH SCIENCE > OCEANS > SEA ICE > ICE EXTENT",
        "VIIRS > Visible-Infrared Imager-Radiometer Suite",
        "NOAA-20 > Joint Polar Satellite System - 1",
        "NOAA-20 (ICES code: 33YO)",
        "GEOGRAPHIC REGION > GLOBAL OCEAN",
        "environment",
        "oceans",
        "climatologyMeteorologyAtmosphere"
    ]
}