Results of calculations and simulations for the Intrinsic Direct Air Capture analysis of Metal Organic Framwork (MOF) sorbents.Includes Grand Canonical Monte Carlo (GCMC) simulations, predictions of the Specific Heat Capacities (CV), and Intrinsic Direct Air Capture (DAC) calculations for MOF sorbents.
About this Dataset
Title | Data for Intrinsic DAC calculations |
---|---|
Description | Results of calculations and simulations for the Intrinsic Direct Air Capture analysis of Metal Organic Framwork (MOF) sorbents.Includes Grand Canonical Monte Carlo (GCMC) simulations, predictions of the Specific Heat Capacities (CV), and Intrinsic Direct Air Capture (DAC) calculations for MOF sorbents. |
Modified | 2024-12-13 00:00:00 |
Publisher Name | National Institute of Standards and Technology |
Contact | mailto:[email protected] |
Keywords | Direct Air Capture , Machine Learning , Thermodynamics , Solid Sorbents , MOFs |
{ "identifier": "ark:\/88434\/mds2-3687", "accessLevel": "public", "contactPoint": { "hasEmail": "mailto:[email protected]", "fn": "Austin McDannald" }, "programCode": [ "006:045" ], "landingPage": "https:\/\/data.nist.gov\/od\/id\/mds2-3687", "title": "Data for Intrinsic DAC calculations", "description": "Results of calculations and simulations for the Intrinsic Direct Air Capture analysis of Metal Organic Framwork (MOF) sorbents.Includes Grand Canonical Monte Carlo (GCMC) simulations, predictions of the Specific Heat Capacities (CV), and Intrinsic Direct Air Capture (DAC) calculations for MOF sorbents.", "language": [ "en" ], "distribution": [ { "accessURL": "https:\/\/doi.org\/10.5281\/zenodo.14452152", "description": "Results of calculations and simulations for the Intrinsic Direct Air Capture analysis of Metal Organic Framwork (MOF) sorbents.Includes Grand Canonical Monte Carlo (GCMC) simulations, predictions of the Specific Heat Capacities (CV), and Intrinsic Direct Air Capture (DAC) calculations for MOF sorbents.", "title": "Data for Intrinsic DAC calculations" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3687\/README.txt", "mediaType": "text\/plain" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3687\/README.txt.sha256", "mediaType": "text\/plain" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3687\/DAC_data.tar.gz", "mediaType": "application\/gzip" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3687\/DAC_data.tar.gz.sha256", "mediaType": "text\/plain" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3687\/IntrinsicDACCycle-0.0.2.tar.gz", "mediaType": "application\/gzip" }, { "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-3687\/IntrinsicDACCycle-0.0.2.tar.gz.sha256", "mediaType": "text\/plain" } ], "bureauCode": [ "006:55" ], "modified": "2024-12-13 00:00:00", "publisher": { "@type": "org:Organization", "name": "National Institute of Standards and Technology" }, "theme": [ "Materials:Modeling and computational material science" ], "keyword": [ "Direct Air Capture", "Machine Learning", "Thermodynamics", "Solid Sorbents", "MOFs" ] }