U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock () or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Breadcrumb

  1. Home

Theory aware Machine Learning (TaML)

A code repository and accompanying data for incorporating imperfect theory into machine learning for improved prediction and explainability. Specifically, it focuses on the case study of the dimensions of a polymer chain in different solvent qualities. Jupyter Notebooks for quickly testing concepts and reproducing figures, as well as source code that computes the mean squared error as a function of dataset size for various machine learning models are included.For additional details on the data, please refer to the README.md associated with the data. For additional details on the code, please refer to the README.md provided with the code repository (GitHub Repo for Theory aware Machine Learning). For additional details on the methodology, see Debra J. Audus, Austin McDannald, and Brian DeCost, "Leveraging Theory for Enhanced Machine Learning" *ACS Macro Letters* **2022** *11* (9), 1117-1122 DOI: [10.1021/acsmacrolett.2c00369](https://doi.org/10.1021/acsmacrolett.2c00369).

About this Dataset

Updated: 2024-02-22
Metadata Last Updated: 2022-05-06 00:00:00
Date Created: N/A
Views:
Data Provided by:
polymers
Dataset Owner: N/A

Access this data

Contact dataset owner Landing Page URL
Download URL
Table representation of structured data
Title Theory aware Machine Learning (TaML)
Description A code repository and accompanying data for incorporating imperfect theory into machine learning for improved prediction and explainability. Specifically, it focuses on the case study of the dimensions of a polymer chain in different solvent qualities. Jupyter Notebooks for quickly testing concepts and reproducing figures, as well as source code that computes the mean squared error as a function of dataset size for various machine learning models are included.For additional details on the data, please refer to the README.md associated with the data. For additional details on the code, please refer to the README.md provided with the code repository (GitHub Repo for Theory aware Machine Learning). For additional details on the methodology, see Debra J. Audus, Austin McDannald, and Brian DeCost, "Leveraging Theory for Enhanced Machine Learning" *ACS Macro Letters* **2022** *11* (9), 1117-1122 DOI: [10.1021/acsmacrolett.2c00369](https://doi.org/10.1021/acsmacrolett.2c00369).
Modified 2022-05-06 00:00:00
Publisher Name National Institute of Standards and Technology
Contact mailto:debra.audus@nist.gov
Keywords polymers , machine learning , transfer learning , theory
{
    "identifier": "ark:\/88434\/mds2-2637",
    "accessLevel": "public",
    "references": [
        "https:\/\/dx.doi.org\/10.1021\/acsmacrolett.2c00369"
    ],
    "contactPoint": {
        "hasEmail": "mailto:debra.audus@nist.gov",
        "fn": "Debra Audus"
    },
    "programCode": [
        "006:045"
    ],
    "@type": "dcat:Dataset",
    "landingPage": "https:\/\/data.nist.gov\/od\/id\/mds2-2637",
    "description": "A code repository and accompanying data for incorporating imperfect theory into machine learning for improved prediction and explainability. Specifically, it focuses on the case study of the dimensions of a polymer chain in different solvent qualities. Jupyter Notebooks for quickly testing concepts and reproducing figures, as well as source code that computes the mean squared error as a function of dataset size for various machine learning models are included.For additional details on the data, please refer to the README.md associated with the data. For additional details on the code, please refer to the README.md provided with the code repository (GitHub Repo for Theory aware Machine Learning). For additional details on the methodology, see Debra J. Audus, Austin McDannald, and Brian DeCost, \"Leveraging Theory for Enhanced Machine Learning\"  *ACS Macro Letters* **2022** *11* (9), 1117-1122 DOI: [10.1021\/acsmacrolett.2c00369](https:\/\/doi.org\/10.1021\/acsmacrolett.2c00369).",
    "language": [
        "en"
    ],
    "title": "Theory aware Machine Learning (TaML)",
    "distribution": [
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_out_parameterization.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_direct.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_direct.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_difference.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_difference.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_quotient.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_quotient.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_linearprior.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_linearprior.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_fixedprior.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_fixedprior.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_parameterization.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_parameterization.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_out_direct.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_out_direct.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_out_difference.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_out_difference.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_out_quotient.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_out_quotient.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_out_linearprior.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_out_linearprior.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_out_fixedprior.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_out_fixedprior.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_out_parameterization.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_out_parameterization.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/out_theory.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/out_theory.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/rf_direct_1000_None.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/rf_direct_1000_None.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/rf_quotient_1000_None.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/rf_quotient_1000_None.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/rf_latentvariable_1000_None.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/rf_latentvariable_1000_None.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/rf_multitask_1000_None.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/rf_multitask_1000_None.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/rf_out_difference_1000_None.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/rf_out_difference_1000_None.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/rf_out_quotient_1000_None.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/rf_out_quotient_1000_None.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/rf_out_latentvariable_1000_None.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/rf_out_latentvariable_1000_None.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/rf_out_multitask_1000_None.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/rf_out_multitask_1000_None.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_latentvariable.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_latentvariable.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_out_latentvariable.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_out_latentvariable.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_latentvariable.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_latentvariable.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_out_latentvariable.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/homo_out_latentvariable.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/rf_difference_1000_None.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/rf_difference_1000_None.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/rf_out_direct_1000_None.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/rf_out_direct_1000_None.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/testtrain\/rgmaindata.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/testtrain\/rgmaindata.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/testtrain\/rgoutlierdata.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/testtrain\/rgoutlierdata.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/README.md.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/README.md",
            "format": "text",
            "description": "README file for Theory aware Machine Learning (TaML)",
            "mediaType": "text\/plain",
            "title": "README"
        },
        {
            "accessURL": "https:\/\/github.com\/usnistgov\/TaML",
            "format": "HTML",
            "title": "GitHub Repo for Theory aware Machine Learning (TaML)"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_direct.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_direct.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/theory.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/theory.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_difference.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_difference.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_quotient.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_quotient.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_linearprior.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_linearprior.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_fixedprior.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_fixedprior.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_parameterization.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_parameterization.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_out_direct.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_out_direct.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_out_difference.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_out_difference.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_out_quotient.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_out_quotient.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_out_linearprior.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_out_linearprior.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_out_fixedprior.csv",
            "mediaType": "text\/csv"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_out_fixedprior.csv.sha256",
            "mediaType": "text\/plain"
        },
        {
            "downloadURL": "https:\/\/data.nist.gov\/od\/ds\/ark:\/88434\/mds2-2637\/mse\/hetero_out_parameterization.csv",
            "mediaType": "text\/csv"
        }
    ],
    "license": "https:\/\/www.nist.gov\/open\/license",
    "bureauCode": [
        "006:55"
    ],
    "modified": "2022-05-06 00:00:00",
    "publisher": {
        "@type": "org:Organization",
        "name": "National Institute of Standards and Technology"
    },
    "theme": [
        "Materials:Polymers",
        "Information Technology:Data and informatics",
        "Materials:Modeling and computational material science",
        "Mathematics and Statistics:Uncertainty quantification"
    ],
    "keyword": [
        "polymers",
        "machine learning",
        "transfer learning",
        "theory"
    ]
}

Was this page helpful?