U.S. flag

An official website of the United States government

Dot gov

Official websites use .gov
A .gov website belongs to an official government organization in the United States.

Https

Secure .gov websites use HTTPS
A lock () or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Breadcrumb

  1. Home

Dataset Search

Search results

87 results found

Towards a Structured Evaluation Methodology for Artificial Intelligence Technology (SEMAIT) MIg analyZeR (mizr) Package

Data provided by  National Institute of Standards and Technology

Our work towards a Structured Evaluation Methodology for Artificial Intelligence Technology (SEMAIT) aims to provide plots, tools, methods, and strategies to extract insights out of various machine learning (ML) and Artificial Intelligence (AI) data.Included in this software is the MIg analyZeR (mizr) R software package that produces various plots.

Tags: analysis software,Artificial Intelligence,machine learning,design of experiments,

Modified: 2025-04-06

A Data-Driven Approach to Complex Voxel Predictions in Grayscale Digital Light Processing Additive Manufacturing Using U-nets and Generative Adversarial Networks

Data provided by  National Institute of Standards and Technology

Digital light processing (DLP) vat photopolymerization (VP) additive manufacturing (AM) uses patterned UV light to selectively cure a liquid photopolymer into a solid layer. Subsequent layers are printed on to preceding layers to eventually form a desired 3 dimensional (3D) part. This data set characterizes the 3D geometry of a single layer of voxels (volume pixels) printed with photomasks assigned random intensity levels at every pixel. The masks are computer generated, then printed onto a glass cover slide.

Tags: 3D printing,additive manufacturing,machine learning,generative adversarial network,Photopolymer,

Modified: 2025-04-06

O-RAN with Machine Learning in ns-3

Data provided by  National Institute of Standards and Technology

This dataset contains a comparison of packet loss counts vs handovers using four different methods: baseline, heuristic, distance, and machine learning, as well as the data used to train a machine learning model. This data was generated as a result of the work described in the paper, "O-RAN with Machine Learning in ns-3," by the authors Wesley Garey, Tanguy Ropitault, Richard Rouil, Evan Black, and Weichao Gao from the 2023 Workshop on ns-3 (WNS3 2023), that was June 28-29, 2023, in Arlington, VA, USA, and published by ACM, New York, NY, USA.

Tags: O-RAN,ns-3,LTE,ONNX,Mobile Networks,modeling and simulation,machine learning,

Modified: 2025-04-06

Trojan Detection Software Challenge - cyber-pdf-dec2022-train

Data provided by  National Institute of Standards and Technology

Round 12 Train DatasetThis is the training data used to create and evaluate trojan detection software solutions. This data, generated at NIST, consists of pdf malware classification AIs trained Contaigio dataset feature vectors. A known percentage of these trained AI models have been poisoned with a known trigger which induces incorrect behavior. This data will be used to develop software solutions for detecting which trained AI models have been poisoned via embedded triggers. This dataset consists of 120 AI models using a small set of model architectures.

Tags: Trojan Detection; Artificial Intelligence; AI; Machine Learning; Adversarial Machine Learning;,

Modified: 2025-04-06

Trojan Detection Software Challenge - image-classification-sep2022-train

Data provided by  National Institute of Standards and Technology

Round 11 Train DatasetThis is the training data used to create and evaluate trojan detection software solutions. This data, generated at NIST, consists of image classification AIs trained on synthetic image data build from Cityscapes. A known percentage of these trained AI models have been poisoned with a known trigger which induces incorrect behavior. This data will be used to develop software solutions for detecting which trained AI models have been poisoned via embedded triggers. This dataset consists of 288 AI models using a small set of model architectures.

Tags: Trojan Detection; Artificial Intelligence; AI; Machine Learning; Adversarial Machine Learning;,

Modified: 2025-04-06

Segmentation of lipid nanoparticles from cryogenic electron microscopy images

Data provided by  National Institute of Standards and Technology

Lipid nanoparticles (LNPs) were prepared as described (https://doi.org/10.1038/s42003-021-02441-2) using the lipids DLin-KC2-DMA, DSPC, cholesterol, and PEG-DMG2000 at mol ratios of 50:10:38.5:1.5. Four sample types were prepared: LNPs in the presence and absence of RNA, and with LNPs ejected into pH 4 and pH 7.4 buffer after microfluidic assembly. To prepare samples for imaging, 3 ?L of LNP formulation was applied to holey carbon grids (Quantifoil, R3.5/1, 200 mesh copper).

Tags: Lipid Nanoparticle,LNP,cryogenic electron microscopy,CryoEM,machine learning,ai,mRNA,

Modified: 2025-04-06

Trojan Detection Software Challenge - object-detection-jul2022-train

Data provided by  National Institute of Standards and Technology

Round 10 Train DatasetThis is the training data used to create and evaluate trojan detection software solutions. This data, generated at NIST, consists of object detection AIs trained on the COCO dataset. A known percentage of these trained AI models have been poisoned with a known trigger which induces incorrect behavior. This data will be used to develop software solutions for detecting which trained AI models have been poisoned via embedded triggers. This dataset consists of 144 AI models using a small set of model architectures.

Tags: Trojan Detection; Artificial Intelligence; AI; Machine Learning; Adversarial Machine Learning;,

Modified: 2025-04-06

Software for Evaluating Convolutional Generative Adversarial Networks with Classical Random Process Noise Models

Data provided by  National Institute of Standards and Technology

This research software package contains Python code to execute experiments on deep generative modeling of classical random process models for noise time series. Specifically, it includes Pytorch implementations of two generative adversarial network (GAN) models for time series based on convolutational neural networks (CNNs): WaveGAN, a 1-D CNN model, and STFT-GAN, a 2-D CNN model. In addition, there are methods for generating and evaluating noise time series defined several by classical random process models.

Tags: time series,machine learning,band-limited noise,power law noise,shot noise,impulsive noise,colored noise,fractional Gaussian noise,fractional Brownian motion,

Modified: 2025-04-06

SolDet: Solitonic feature detection package

Data provided by  National Institute of Standards and Technology

SolDet is an object-oriented package for solitonic feature detection in absorption images of Bose-Einstein condensate. with wider use for cold atom image analysis. Featured with classifier, object detector, and Mexican hat metric methods. Technical details are explained in https://arxiv.org/abs/2111.04881.

Tags: soliton,machine learning,python package,

Modified: 2025-04-06

Theory aware Machine Learning (TaML)

Data provided by  National Institute of Standards and Technology

A code repository and accompanying data for incorporating imperfect theory into machine learning for improved prediction and explainability. Specifically, it focuses on the case study of the dimensions of a polymer chain in different solvent qualities. Jupyter Notebooks for quickly testing concepts and reproducing figures, as well as source code that computes the mean squared error as a function of dataset size for various machine learning models are included.For additional details on the data, please refer to the README.md associated with the data.

Tags: polymers,machine learning,transfer learning,theory,

Modified: 2025-04-06